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OPTIMIZATION OF THE STRUCTURE OF COMPOSITES* 

A.YU. BELYAYEV 

The problem of optimizing the electrical conducting properties of a two- 
phase composite is considered. The optimum geometry of the phase 
distribution of materials from which the composite is constructed, is 
sought. In some cases the best structure of the composite represents 
the limit of small-scale structures, in which the region occupied by the 
phases fragment into pieces, of size tending to zero. The idea of 
using, in such situations, the theory of averaging the equations with 
rapidly oscillating coefficients to construct the optimizing sequences 
of structures was suggested in /l/. Below the theory of averaging is 
used to solve the plane problem of the electric current in a ring filled 
with a two-phase composite, with fixed concentrations of phases. The 
small-scale geometry of the distribution of the composite phases is 
found for which the electrical resistance of the ring is lowest. 

1. Formutation of the problem. We consider a two-phase composite occupying the region 
V in a plane. The region is split into two parts, V, and Ii_, filled with electrically 
conducting materials with corresponding electrical conductivities cT and o_ (Fig.1). The 

values 'PI and 'Pz (% > cpr) of the electric potential are given on two segments 2, and Z, of 
the boundary of the region. The remaining part of the boundary is electrically insulated. 
The value J of the current flowing through the region V depends on the geometry of the dis- 
tribution of the regions I'+ and V_ in V, i.e. on the structure of the composite. We 
require to find the structure for which the current is largest or smallest. The areas of the 
regions V, and V_, or in other words the concentrations of the composite phases, are 
assumed to be known. 

If the structure of the composite is given, then the current J and electric potential 

'p (4 can be found with help of the variational principle 

(cpl - CPJ J = inf Cc (4 (VT (4)Y (1.1) 

c (5) = r (z) c+ + (1 - p (5)) (J- = F (r (5)) 

Here r (5) is the characteristic function of the region V,, equal to unity on I'+ and 
equal to zero on V_ and describing the structure of the composite. The local electrical 
conductivity u(X) takes the values u+ and u_, respectively. The angle brackets denote 
the integral of the functions within them, over the region V. The lower limit of the func- 
tional on the right-hand side of Eq.tl.1) is taken over all test functions 'p (4 assuming 
the values of 'pr and 'pz on 8, and 2,. The electric potential makes this functional a 

minimum and satisfies the equations 

div j (z) = 0, j (x) = -o (2) VT (z) 

and also the conditions of continuity of the normal component of the current density j (4 
and the interphase boundary. 

The current J is a functional of the characteristic function r (z). given implicitly 
by expression (1.1). The problem consists of maximizing (or minimizing) this functional over 

all characteristic functions with a given mean value. 
Since the magnitude of the current is proportional to the potential difference, it is 

convenient, when solving specific problems, to study the conductivity 3 instead of the 
current J, which is related to the current by the formula 

J = AZ(cp, - cpl) 

where the constant A, which depends only on the region V, is chosen so, that when u, = u_ = u, 
we have ij=u. To find A, we must solve the problem of the current flowing through the 
region V filled with a homogeneous material. 

Example 1. The simplest case is the case when the region V is a rectangle in which 2, 
and X1 are the opposite sides. In the problem of maximizing the conductivity 6, the 
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Fig.1 Fig.2 

optimal structure will be the structure in which the materials are distributed in layers 
parallel to the insulated walls of the rectangle, and in the problem of minimizing 0 the 
layers are perpendicular to these walls. The maximum and minimum values of the conductivity 
are given by the Voigt and Reuss formulas 

- omax = F (c) = co+ + (1 - c) c_, ?imin = (co++ + (i - c) u--1)-1 

where c and 4 -c are the proportions of the area occupied by materials with conductivity 
ot and o_, respectively. We note that the solution of these problems is not unique. An!? 
layered structure will be optimal irrespective of the number and thickness of the layers. 

Example 2. In the problem of minimizing the conductivity of a ring described in polar 
coordinates by the relation S,<r<Rn. the optimal structure is unique (Fig.2). The inner 
part of the ring Hl<r<R must be filled with a poorly conducting phase, and the outer part 
R<r<Ra with a material of high conductivity. We shall assume without loss of generality 
that o+>o_. Then the radius R describing the interphase boundaryand the minimum conductivity 

%n f will be given by the formulas 

R= = CR,= -+ (1 - c) Rse (W 
iimln = (o--l In R/R, -+ q-1 111 RI/R)-’ In R&Z1 

Proof. For the structure shown in Fig.2, the problem of electrostatics is axisymmetric 
and easily solved. The conductivity of this structure is found using formulas (1.2). In the 
course of computations we require the value of the normed multiplier A = Zn(ln RliR1)-‘, which 
is also obtained explicitly by virtue of the axial symmetry of the homogeneous problem. We 
require to show that for the remaining structures the conductivity is greater than the one 
obtained. 

The radial component E, of the electric field vector E= -V9 satisfies the relation 

<E,(z) r-1) = -2n (p* - 91) 
(1.3) 

and we can confirm this by integration by parts. The following inequality holds: 

(cp, - 9,) I > inf <u (z) E* 66) (1.4) 
where the lower limit is taken on the set of all, not necessarily potential, vector fields 
E (5) satisfying the relation (1.3), i.e. in a wider class of functions than that in the 
variational principle (1.1). Calculation of this lower limit, after taking into account the 
constraint (1.3) and with help of the Lagrange multiplier, represents an algebraic problem 
whose solution has the form 

inf (IS (x) Es(x)> = 4n* (9% - 9,)' <(r-l (2) r-">-' 

Let us strengthen inequality (1.4) by minimizing its right-hand side over all structures 
r (I). To do this, we must choose the minimizing structure so as to make the quantity D(Z) 
larger, at the points at which r is larger, i.e. in the outer part of the ring. This will 
yield the structure shown in Fig.2, where the interphase boundary is determined by the 
specified concentration of materials. The value of the right-hand side of inequality (1.4) 
is equal, for this structure, to A7S,i, (92 - 'PI)'? and is larger for all the remaining structures. 
Thus we have obtained the lower limit for the current, and hence for the conductivity 

(w - ~3) J = AS(9pr - 9,)* > ASmi,(92 - 9,)* 

which completes the proof. 
In the general case the study of the problem in question encounters the following dif- 

ficulties. Firstly, the set of characteristic functions is not linear, i.e. the functions 
cannot be added and multiplied by a number. This makes it impossible to use most methods of 
variational calculus. Secondly, there are no existence theorems for the class of problems 
of optimal control in question. Therefore, the upper of lower limit of the functional J may 
not be attainable on any structure r(r), but only on some sequences of structures fn (7). 
For large n the structures may have an irregular, fragmented character, and in order to 
improve the properties of the composite we must make its structure more complex. 
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This situation was first discovered in /l/, and it appears to be typical in problems of 
optimizing the properties of composites /2, 3/. In order to obtain the optimizing sequences 
of the structures it is best to reformulate the problem after generalizing the concept of a 
composite, and after extending the domain of definition of the functional J. The generalized 
structures can be described by means which are more suitable for analytic applications than 
sequences of characteristic functions. 

2. Generalized formulation of the problem. Following the ideas put forward in /l/, we 
shall seek the optimizing sequences of structures in the form r,, (5) = r(z, ns), where the 
function r(.z, y) depends periodically on y and takes the values 0 and 1. The second argument 
of the function r(s, nr) causes, for large values of n, rapid oscillations in the character- 

istic function. The structure r,(r) therefore represents, near every point 3c, a periodically 
inhomogeneous composite the geometry and periodicity cells of which change slowly from cell 

to cell, together with the first argument of the function r(r, y). We shall call the sequences 
described above locally periodic generalized structures. 

Near every point X, the locally periodic structure will be characterized, in particular, 
by the local concentrations c (x) and 1 - e (5) of materials with conductivities o+ and o_, 
respectively, and an effective conductivity tensor oil (I). The function c(5) represents a 
weak limit of the sequence of characteristic functions rvl (I) and oij(Z) is the G-limit of 
the local conductivities. 

The following relation holds by virtue of the averaging theorems /4/: 

lim inf,<F (r,(2g)(cq(X))2) = inf,(crij(x)V,cpVjcp) 
n-c%? 

which enables us to extend the functional J defined on the set of usual structures, to locally 

periodic generalized structures: 

(% - %) J = in& COij (4 VicP (4 Vj(P (X)> 
(2.1) 

For a fixed value of the local concentration c (z) at the point 2, the effective 
conductivity tensor Uij(x) can take various values depending on the local behaviour of the 
function r (5, y). The set G (c (5)) of such values is called the accessibility set. For the 
class of problems discussed here, the accessibility set is described in /l/.Using the functions 

c (r) and aij t5) # we can restore (not uniquely) the sequences of the structures rn (x). Such 
sequences were produced in /l/. 

When C(Z) = 0 and c (x) = 1 , the set G (c (z)) contracts to the point 0_6*j or c+h,j r 
respectively. For other values of c (5) the accessibility set occupies the whole region 

in the space of symmetric square matrices, and the effective conductivity tensor finds a 

certain amount of independence. We note that the usual structures can be regarded as 

generalized, with the characteristic function r,(z) independent of n. The local concentration 
and effective conductivity tensor are identical, in the case of the usual structures, with 

the characteristic function r(Z) and the spherical tensor of local conductivities e (x) 6ij 
and the variational principle (1.1) is identical with the variational principle (2.1). 

The generalized current J depends on the effective conductivity tensor O<~(X) on the 

right-hand side of definition (2-l), and on the local concentration c (x) which fixes the 

accessibility set. The generalized formulation of the optimization problem consists of 

maximizing (or minimizing) the current J over all functions c (Z)> Oij (x) such that 

(C (x)) = CT/, 0 < c (z) Q 1, (Jzj (z) E G CC (~1) (2.2) 

The first condition means that the proportion of the area occupied by each material is 
fixed and equal to c for the material with conductivity c,. 

The generalized formulation differs from the initial formulation only in the fact that 
the local concentration c(x) is allowed to take values different from 0 to 1. An additional 

optimizing parameter appears here, namely the effective conductivity tensor uij (x), which was 

initially rigidly connected with c (5). Such an extension of the domain of definition makes 
it possible to prove the theorem of the existence of a generalized solution of the problem of 
maximizing (and minimizing) the current J in the class of bounded measurable functions c (x)7 
(Jij Cz), over which the optimizing sequence I',(z) sought is reconstructed. The generalized 
solution can be non-unique. 

In solving specific problems, it is useful to remember that J is a concave functional 

of c (5). oij (x)7 and the functional J-' is concave with respect to the variables c(X), cij-l(X). 
The initial formulation did not include these properties, since the functional was not defined 

on a linear set. 
The examples given above show that amongst the solutions we may find the solution in 

which the local concentration C (2) takes the values 0 and 1, and will represent the character- 
istic function of some region I/+. These solutions are not generalized and a situation may also 
arise in which there are no non-generalized solutions. 
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3. Tke problem of a ring with tke lowest etecttial resistance. Let us consider the 
problem of maximizing the conductivity of a ring (Fig.2)‘ filled with materials whose con- 
ductivities are b+, e-(U+.~e-). We shall seek a generalized optimal structure with local 
concentration c(z) and effective conductivity %l(z). From the axial symmetry of the problem 
and the concavity of the functional J it follows that amongst the optimal generalized 
structures there exists at least one axisymmetric solution. By the axial symmetry of the 
generalized solution we mean the axial symmetry of the functions c(z)and otj(r).The structures I',(Z), 
which constitute the optimizing sequence, nay themselves not have this symmetry. For the 
axisymmetric tensor n*j(") the electrical potential 'p (4 which imparts the minimum value 
to the right-hand side of relation (Z-l), depends only on the polar radius r, and satisfies 
the equation % (4 'P' (4)' = 0 where ur (r) is the radial component of the tensor 'Tag. Having 
solved this equation with boundary conditions 'PI and ?a on the inner and outer part of the 
ring, we can reduce relation (2.1) to the form 

Since in the case of a ring the current and conductivity J are connected by the relation 
J - zn (1,~ R~'R~)_'s(~~ - Q), it follows that 

a = H-1 (o) lnRa!R, (3.1) 
In order to maximize the conductivity 5 in the class of axisymmetric generalized 

structures, we must nininize the functional H (ET) over all possible local concentrations 
c(r) and effective radial conductivities o,(r). Let us fix the function c fr), and minimize 
the functional J over the functions u,(r). The effective conductivity tensor should be chosen 
such that its radial component or(r) is as large as possible for every value of the polar 
radius r. Then the functional H(o) will take its lowest value. The accessibility set G(c(r)) 
is constructed such that the largest possible value of the component of the effective tensor 
is calculated, in any one direction, using the Voigt formula and is attained on a layered 
structure, with the layers parallel to this direction /l/. Therefore we should put I&. (r) = 

F (c (r)) in the functional H (Of. Rt the points at which O<C@)<~, the optimal generalized 
structure has the form of a sequence of layered structures with the layers distributed in a 
radial direction. Pure phases will appear at the points where c(r) = 0 or C(F) = 1. 

We must now minimize the functional H(o) over the local concentrations 
the condition (2.2). 

c(r) satisfying 
Without this conduction the problem would be reduced to that of ninimiz- 

ing the integrand in the functional H (M, and would produce a trivial result stating 
that, in order to increase the conductivity of the ring, we must fill the latter with a good 
conductor, provided that its supplies are unlimited. 

We shall use, instead of the local concentration c(r) i) the function F (c (r)) = 0,. (r). 

In terms of this new variable the constraint (2.2), taking axial symmetry into account, will 
have the form 

When minimizing the functional H(e), we shall use the constraint (3.2) with help of the 
Lagrange multiplier 0. 
the expression 

The problem will then be reduced to that of minimizing, for every r, 
h = (ror (+-I + 0~ (r). The function % (4 imparting a minimum to this expression, 

depends on the unknown Lagrange multiplier o. 
an equation for determining e. 

Its substitution into the formula (3.2) yields 
Expressing e for this equation in terms of the initial 

parameters RX, RI. a+, a-.~ of the problem, we finally obtain the effective conductivity 0, (r) , 
and hence the required generalized optimum structure. The largest conductivity of the ring 
%lax is calculated for the known function or(r), using formula (3.1). 

The ninimum value of h can be attained at fixed r either within the interval o_<o,(~$<(r+, 
or at its ends, depending on the values of the parameters r and o. We note that the Lagrange 
multiplier o must be positive, otherwise h will depend monotonically on et (4 , and in order 
to minimize h it would be necessary to put or(r)= o+, for all values of r, and this would be 
impossible by virtue of the constraint (3.2). 

It can be confirmed that when e>o, 
function 

the minimum value of h will be imparted by the 
er (r) defined by the equation 

i 
et* r<ft, 

o,(r)= ,z-", p:"SI'"_ (X3) 
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In the interval R,<r<R- the quantity c+(r) decreases monotonically from a+ to (T_ 
while the local concentration decreases from 1 to 0. The quantities R+ and R_ determine, 
within the ring, the boundaries between the pure phases and the generalized layered structure. 

Note that the quantities R+ and R_ may appear outside the segment (R,.R*). Therefore 
situations are possible in which the optimal structure exists without one or both pure phases. 

Let us first assume that all three phases are present in the optimal structure, i.e. that 
the following inequalities hold: 

R,<R+<R-<Rz (3.4) 

To find the Lagrange multiplier o, we substitute the function defined by the formula 
(3.3) into (3.2). This yields 

0-l = b+~_ (cRz* + (1 - c) R,') 

Checking the inequalities (3.4)) we obtain the domain of initial data of the problem for 
which the three-phase case in question is realized. The inequalities can be reduced to the 
form 

co_ (RI'- RI')> (u+ - d-) R,' (3.5) 
(1 - c) U+ (Ra* - RI*) >(a+ - b_) Ra' 

Under such constraints imposed on the initial data the maximum conductivity smar is 

found from the formula 

r&In R,'R, = u--I - #+-I + (111 RJR_) u_-‘ + (In R+:R,) o+-' 

Apart from the version discussed here, three more versions of the mutual distribution of 
the intervals (R,,RI) and CR+. R-J are possible. In the case when the inequalities 

R,<R+<Rz< R- 

hold, the optimal structure will consist of two layers. The inner part of the ring R,<T<R+ 
is filled with a material whose conductivity is et. and the rest will be filled with a 
composite consisting of fibres finely notched in a radial direction. The radial component 
of the effective conductivity tensor 0, (r) and the quantity R+, are calculated, as before, 
using formulas (3.3) in which the Lagrange multiplier m obtained from (3.2) has the form 

0-l = a+' (RI - [(T+-~ (I?+ - CT_) (1 - c) (RI* - RIP)]"z)z 

The domain of initial data for which this case is realized, is defined by the inequalities 

(1 -c) (0, -a_) (RP+ R,) < u+(Ra - R,) (3.6) 
(1 - c)d+ (Raa - R,4) <(a+ -CL) Rn' 

The maximum conductivity R,,,mar is calculated using the formula 

a-1 maX In RJR, = o+-'R+-'(Ra - R,) + o+-'ln R+IR, 

When the inequalities 
R+<Rl<R-<Ra 

hold, the optimal structure also consists of two layers, but the inner part of the ring RX< 
T<R_ is filled with the layered component, and the outer part with a poorly conducting 
material of conductivity a-. The relations describing this case have the form 

o-1 = u_' (R, + [n--l (u+ -a_) c (Rid - R,')l"')a (3.7) 
~(a+ - a-) (Ra+ R,)<o_(Ra -RI) 

eo_ (Rap - R,') <(a+ - a_) RP 
;&In R,/R, = o_-'R_-'(R_ - RI)+ IS_-'h RalR- 

Finally, when 
R+<R,<Ra<R- 

the single-layer generalized optimal structure is characterized by the relations 

O-“* = "IF (c) (Rn + R,) 
c (b+ - u-) (R. + R,) >o_(Rs -R,) 

(1 -c) ('J+ - K) (Ra + A,) > o+(R,- R,) 
8 max = '/SF (c) (R. + R,) (RI - RI)-‘In RdR, 

(3.8) 

The domains of initial data of the problem given by the inequalities (3.5)-(3.8), do not 
intersect each other and exhaust all possible versions. 

Thus the optimizing sequences of structures have been constructed for any value of 
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RI, RI, a+, a_-, e. We note that the generalized optimal structures obtained are not unique. 
Functions c (z) and ‘J1J t-d can be found which have no axial symmetry, but nevertheless 
produce the same maximum conductivity of the ring. It can also be shown that the problem 
discussed here has no non-generalized optimal structures. 
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ON AN INTEGRAL EQUATION FOR AXIALLY-SYMMETRIC PROBLEMS IN THE CASE 

OF AN ELASTIC BODY CONTAINING AN INCLUSION* 

B.I. SMETANIN 

An approximate solution of the singular integral equation (SIE) which 
arises in spatial problems in the theory of elasticity with mixed 
conditions of one-sided detachment of inclusions under axially-symmetric 
torsion is considered. The singularity is taken into account using the 
exact solution of the equation which determines the conditions of the 
analogous detachment in a two-dimensional problem in the case of a 
sheet. It is proved that, subject to certain geometric constraints, the 
solution of the initial problem can be obtained by the method of 
successive approximations. The problem of the axially-symmetric torsion 
of a layer using a rigid circular disc embedded in this layer and fixed 
to it by one of its surfaces is treated as an example. The possiblity 
of the practical realization of this problem lies in the fact that a 
torsional moment which is applied to a rod which has been welded 
perpendicular to the centre of a disc can be transmitted through the 
disc to a layer and pierce a part of the layer. 

The solution of one type of singular integral equation /l/ which arises in problems on 
inclusions in elastic bodies which have become detached has an integrable singularity at the 
ends of the integration interval. In applications such as axially-symmetric problems on 
detached inclusions in elastic bodies /2, 3/ the need arises to construct the solution of 
the above-mentioned integral equation which is bounded at one of the ends of the integration 
interval. This solution is constructed below by the method of "large h" /4/. 

1. Let us consider a singular integral equation in the function Q(S) 

(1.1) 


